Plasma deposition of Ultrathin polymer films on carbon nanotubes

Donglu Shi
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221

Jie Lian
Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, Michigan 48109

Peng He
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221

L. M. Wang
Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, Michigan 48109

Wim J. van Ooij
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221

Mark Schulz and Yijun Liu
Department of Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221

David B. Mast
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

(Received 21 May 2002; accepted 18 October 2002)

Ultrathin films of pyrrole were deposited on the surfaces of carbon nanotubes using a plasma polymerization treatment. High-resolution electron transmission microscopy images revealed that an extremely thin film of the polymer layer (2–7 nm) was uniformly deposited on the outer and inner surfaces of the nanotubes. The nanotubes of all sizes exhibited equally uniform ultrathin films, indicating well-dispersed nanotubes in the fluidized bed reactor during the plasma treatment. In particular, the inner wall of the nanotube was also coated with a uniform ultrathin film of only 1–3 nm. Time-of-flight secondary ion mass spectroscopy experiments confirmed the highly branched and cross-linked polymer thin films on the carbon nanotubes. The plasma deposition mechanism is discussed in this letter. © 2002 American Institute of Physics. [DOI: 10.1063/1.1527702]

The development of surface nanostructures will be one of the key engines that drive our technological society in the 21st century. This rapidly growing area focuses on tailoring a nanoparticle surface structure for specific and unique properties. One of the important developments in nanostructures is the synthesis of carbon nanotubes. Carbon nanotubes are intrinsically superelastic one-dimensional structures that are chemically inert, and they possess electrochemical, piezoelectric, tunable electronic, and high thermal conductivity properties. These properties make carbon nanotubes the potential successor to carbon fibers in composites, silicon in electronic devices, ionic polymers for actuators, and a myriad of other technologies for sensors. Unfortunately, the surface of the nanotube is often not ideal for a particular application. The ability to deposit well-controlled coatings on nanotubes would offer a wide range of technological opportunities, based on changes to both the physical and chemical properties of the nanotubes and nanoparticles.

The coating nanotechnology being reported in this letter is also critically important for active materials development and in the design of smart nanocomposites. Nanocomposite film actuators are being investigated by coating carbon nanotube ropes with a structural polymer electrolyte to improve ion exchange and transduction efficiency. Coatings may also be able to increase the piezoelectric properties of nanotubes for use in high-frequency strain sensing applications. An innovative plasma polymerization coating process that can be used for many of the above applications is discussed subsequently.

Generally, nanoparticles are difficult to handle in the plasma polymerization coating process due to aggregation and the large surface area per unit mass of the powder. However, a fluidized bed reactor is an ideal tool for gas–particle reactions due to the intensive mass and heat transfer between the two phases, short reaction time, omnidirectional deposition, and flat temperature profile. Therefore, the combination of plasma polymerization and the fluidized bed process represents an innovative approach for low-temperature surface modification of nanoparticles.

In this experiment, we used Pyrograf III PR-24-PS and PR-24-HT nanotubes as substrates. These nanotubes have the same structure and purchased from Pyrograf Products, Inc. The plasma reactor for thin film deposition of nanotubes has been introduced previously. The vacuum chamber of the plasma reactor consists of a Pyrex glass column about 80 cm in height and 6 cm in internal diameter. The carbon nanotubes are vigorously stirred at the bottom of the tube and thus the surfaces of nanotubes can be continuously rotated and exposed to the plasma for thin film deposition during the plasma polymerization process. A magnetic bar was used to stir the powders. The gases and monomers were in-
The fragments of the wall with inclined planes (002) showing lattice space on the outer and inner surfaces of uncoated Pyrograf III PR-24-PS PR-24-HT nanotubes with slight roughness (<1 nm) on the surface. (b) An ultrathin film of pyrrole can be observed on both outer and inner surfaces of coated Pyrograf III PR-24-PS PR-24-HT nanotubes.

Based on the bright-field TEM and HRTEM images, the wall thickness of the nanotubes can be estimated to be about 20–30 nm for both the Pyrograf III PR-24-HT and Pyrograf III PR-24-PS carbon nanotubes.

Nanotubes with axially parallel graphite layers (not shown here) and nanotubes with axially parallel graphite layers oriented at an angle to the tube axis [Fig. 2(a)] were observed. The edge dislocations can be seen due to the disorder of the graphite layers (002). It is noticed that both the outer and inner surfaces terminate at the graphite (002) layer without the addition of a surface layer, for the originally uncoated nanotubes [Fig. 2(a)]. The bright-field and HRTEM images of these nanotubes after plasma treatment are shown in Fig. 2(b) (Pyrograf III PR-24-PS PR-24-HT nanotubes) and 3 (Pyrograf III PR-24-PS carbon nanotubes), respectively. An ultrathin film amorphous layer can be clearly seen covering both the inner and outer surfaces of the Pyrograf III PR-24-HT nanotubes [Fig. 2(b)], but only covering the outer surface of the Pyrograf III PR-24-PS carbon nanotubes [Fig. 3(a)]. The thin film is uniform on both surfaces, with a larger thickness on the outer wall (7 nm) than on the inner wall (1–3 nm) surface [Fig. 2(b)]. The thickness of ultrathin film is approximately 2–7 nm surrounding the entire nanotube surface of both the Pyrograf III PR-24-HT and Pyrograf III PR-24-PS carbon nanotubes. The film is also thicker and more uniform than the roughness (<1 nm) on the outer surface of the carbon nanotubes [Fig. 2(a)]. In Fig. 3(b), we show the HRTEM image of a coated Pyrograf III PR-24-PS carbon nanotube. The lattice image of graphite can...
In previous studies, we have successfully deposited ultra thin deposition of thin films on the inner tube surface. In our tubes.

In particular, the spectrum in Fig. 4(b) shows carbon–fluorine peaks, indicating the surface coating of the nanotubes, and consistent with the HRTEM data presented in Fig. 1–Fig. 3. In particular, the spectrum in Fig. 4(b) shows carbon–fluorine in the forms of \(C_2F^+\), \(C_3F^+\), \(C_4F^+\), and \(C_5F^+\), indicating highly branched and cross-linked polymer structure in the deposited thin film. It is to be noted that the fluorine shown in the TOFSIMS spectrum can only be part of the monomer introduced during the plasma coating process, strongly indicating highly branched and cross-linked polymer structure of untreated Pyrograf III PR-24-HT carbon nanotubes. The TOFSIMS was carried out to study the surface films of the nanotubes on its surface.

For TOFSIMS spectra confirmed the polymer nature of the deposited thin films. By controlling the plasma coating conditions, the deposition rate can be closely controlled so that the film thickness on both the inner and outer surfaces is uniform and nearly identical.

In summary, we have deposited an ultrathin polymer film on the inner and outer surfaces of carbon nanotubes by means of a plasma polymerization treatment. The polymer layer is not only uniform on both inner and outer surfaces, but it is also deposited in an extremely thin layer of 2 – 7 nm. TOFSIMS spectra confirmed the polymer nature of the deposited thin films. By controlling the plasma coating conditions, the deposition rate difference does not appear to be great for both inner and outer surfaces, as evidenced in Fig. 2(b).

The TEM analyses were conducted at the Electron Microbeam Analysis Laboratory at the University of Michigan, Ann Arbor, Michigan. This research was supported in part by a grant from NSF, DMII division, No. DMI-9713715.

However, in this work, the deposition must take place in the inner tube whose diameter is only about 20 nm. The length of these tubes is on the order of several microns. In order to obtain a uniform coating at the inner wall surfaces, the fluidization of the nanotubes and the plasma condition must be critically controlled. In our plasma coating process, both energy terms (surface energy of the nanotube and the surface tension of the polymer) were balanced by controlling the plasma coating parameters, including electron density, temperature, and energy density. The gas pressure must be moderate for a low collision rate on the nanotube inner and outer surfaces. As shown in Fig. 2(b), there is an extremely thin (1 – 3 nm) polymer film deposited on the inner wall tube surface while a relatively thicker film is deposited on the outer surface. This is an indication of the deposition rate difference within and outside the nanotube. Because of the nanoscale diameter of the tube, for a given gas pressure, the collision frequency must be reduced inside the nanotube, resulting in a lower deposition rate. However, this deposition rate difference does not appear to be great for both inner and outer surfaces, as evidenced in Fig. 2(b).

One of the critical issues addressed in this study is the deposition of thin films on the inner tube surface. In our previous studies, we have successfully deposited ultra thin films on the nanoparticle surfaces of alumina and ZnO.

17. Applied Sciences, Inc., 141 W. Xena Ave., P.O. Box 579, Cedarville, OH 45314-0579.